Wednesday, 29 January 2014

Term 1 Week 3

Mr Tan does not come (he told us beforehand) for the whole week. One of our Science lessons is turned to English and the other we have a relief teacher. The relief teacher just gave us a worksheet and told us to complete it; nothing particularly out of the ordinary. Conclusion: Not much Science learning today. But...

We have just learnt about our Independent Studies subject. All the marks for this subject are based on a Project Competition (Gulp). If we don't get a C6 for this we can't be promoted to Secondary 2, meaning once you're project goes bust, you're over! My group members are Tan Zi Yuan, Kyaw Khant Zaw and Xu Ziqi. For the Project Competition, there are 12 categories, 4 of which Secondary 1 students are not allowed to do as we supposedly do not have good enough research skills yet. The categories are: Cat 1-experimental, Cat 2-Non-experimental, Cat 3-Inventions, Cat 4-Resource Development, Cat 5-Creative Arts, Cat 6-Language Arts (English), Cat 7-Language Arts (Chinese), Cat 8-Service Learning, Cat 9-Mathematics, Cat 10-InfoComm, Cat 11-Future Trends and Cat 12-S.T.E.M (something to do with engineering Science). We are not allowed to do cats 1,2,8 and 12. After sitting for the assembly talks for all the different categories available to us, we finally decided on Cat 3, as the only ones we were actually interested in were cats 3,4 and 11. For resource development, we felt that it would be too simple and useless, thus quickly discarded the idea. For Future Trends, we knew that we would have to tackle a big topic to get a good mark, and we felt that we had no right to be debating problems that others had and have been debating for the last few decades or so. 

After brainstorming, one of our group members (Xu Ziqi) thought of an idea. People often face the problem whereby they mix up their drink bottles/cans/cups among themselves and refuse to drink each other's drinks. To solve this problem, we thought of using acrylic resin/latex (material used for scratch cards, e.g. in lucky draws) and paste it on the cap for people to scratch their initials/a symbol representing themselves so as to differentiate their drinks between themselves. After some research,we found that this kind of material was easily and cheaply available and for sale and could be painted/pasted on a surface.

For our design to work, however, we first needed to test the material for its durability and how it reacts when exposed to conditions bottles/cups/cans are sometimes exposed to, such as its resistance to scratching, heat, cold and wetness. Thus we designed some tests to test these factors. We also plan to do a survey to search on different people's opinions towards this problem.

After we met with our teacher mentor, we found that there was still one more step to do. We had to document our progress (Mr Tan who is both our Science teacher and IS mentor said it was something he had to do on us) as we worked on the project. He gave us "the 6 thinking hats", a step by step method to solve problems, and to use this template. Thus in future when I discuss with my group members on Google Docs I will have to copy chat to a Word Document and save it (lots of spam as well from the others). This is the only way I can think of to document our discussion.

Wonder what is in store for us in Week 4...

Saturday, 25 January 2014

Personal Work Samples


Sorry for the poor resolution


Plasma ball demonstration by Mr Tan


Making the compound copper sulphate through heating-it turns blue first then bursts into flames!!!



This is the alcohol question I have been talking about. This signifies one of the first times in my life that I have done independent research and I find it very fulfilling. It was also very fun to think out of the box. This time, my parents had to tell me to take the initiative to search for the answer. Having this experience, I will do it on my own initiative without need of reminder.


Reflections on Science Experiences

Component 3: Reflections on Science Experiences
These experiences can include laboratory sessions, fieldwork, excursions, sabbatical courses or any Science related activities.
Details of Activity
Term: 1/2

Name of Activity: CHAOS competition viewing
Objective of Activity: CHAOS is a competition whereby teams of students from different schools are given extremely difficult and complicated questions in mathematics, physics, chemistry and biology, and are given about a month to prepare and do research before presenting their findings or solutions in a coherent storyline to a panel of judges. These questions are very complex and unique and there is no one way to arrive at the answer. In depth research is required for every questions. Presentation skills and creativity are also tested through the acting.

Venue: Science Centre

Pictures of Activity


1. What have you learnt from the activity?

For as long as I have been in Singapore, all the competitions of every subject are extremely dull and boring, and are usually very structured-e.g. math olympiad, writing competition. This particular competition has really made me learn something applicable in real life instead of some useless head knowledge that is not practical. For example, they were tested on how to estimate the number of species on earth and something else related to mutations and gene sequences. I was truly wowed by the difficulty of the competition and the intelligence of the competitors.

http://www.science.nus.edu.sg/images//outreach/chaos/CHAOS_2014_Q.pdf

http://www.science.nus.edu.sg/images//outreach/chaos/NUS%20HIGH%20CHAOS_Team%201%202013%20-%20flattened.pdf

Click these 2 links for the questions and answers respectively. You will be shocked by the complexity of the questions that these mere secondary school students are expected to do.

2. What do you like most and least about the activity?

I liked the uniqueness and difficulty of the competition. I also liked that there was no specific answer or rubric and that it tested many different skills. It is also more relevant to real life as you learn research and presentation skills instead of for example olympiads where you are tested questions based on your own knowledge even though firstly it is not relevant to real life and secondly you can get the necessary information through other means in real life. The challenge of this competition is not knowledge alone but filtering out the correct information to use and how to present it in a systematic, creative and coherent manner.

I didn't like so much how the students were forced to act out the answers in a storyline. To me it was rather a waste of efforts of the students that did not contribute to the actual quality of the answers. One of the teams nush, did better than RI, even though I felt that there Science was much shallower. However they had more acting and that was probably the deciding factor for them to win. I feel that the rubrics should put little to no emphasis on the "storyline" which just gives another thing for the already burdened students to worry about.

3. What do you learn about your partner (if any) from doing the activity? (No partner involved)

By the way Hwa Chong clinched first!!! :)


Reflections on termly performance and growth and development in Science

I: Termly Performance
1. What is your target? (A1, A2, B3 etc.)
Ans: A1.
2. What is my plan to achieve my target?
Since my main weakness in Science is answering techniques, I will look through the different types of questions and memorise the format for each. I will also look through the concepts and clear any misconceptions.
3. For class tests/end of year exam, what are the areas that you need to improve and what concrete steps that you would take to improve.
Same as above.
II: Growth Development
1. Which parts of the lesson did you not understand?

During the lesson on Bose-Einstein condensate, I heard about bosons and fermions. I have a few questions. Why does having a whole number make it indistinguishable? What do you define as distinguishable? Why do the atoms need to be indistinguishable to become Bose-Einstein condensate? What defines something as being in the state of Bose-Einstein condensate? Our Science teacher told us that Bose-Einstein condensate had something to do with indistinguishable waves, but my father said this is A COMPLETELY DIFFERENT CONCEPT!

As for now that is about all the questions I have.

2. Where do you look for more information to help you understand the lessons better?
Ans: I usually ask my parents/teacher about the topic/question or search the internet for the answer.
For example, one of the questions in a test was "How do you heat alcohol (flammable) with a Bunsen burner so that it will not catch fire?" As I had never seen such a question before, I thought of the thistle funnel that our Science teacher had introduced to us during our lab session and also that combustion required oxygen. I thought that I could place a chemical that absorbed oxygen inside the enlarged part of the thistle funnel and then pour the alcohol inside to be heated as it would have no oxygen to combust. After asking my parents, they told me the conventional method of indirectly heating the alcohol using a water bath and Bunsen burner. They also felt that my method was incorrect as they had never heard of a thistle funnel before. After searching the internet, I found out why the alcohol caught fire even though it was not in direct contact with the flame (through the test tube)(I originally thought contact with the flame was the factor causing the alcohol to catch fire); alcohol has a flash point that will cause it to catch fire, and even and slow heating will prevent the alcohol from catching fire. I also searched for materials that can absorb oxygen. Finally, I asked my teacher, and he said that though my method is correct, the water bath is the easier and more conventional method to heat alcohol.
3. What are the different ways that you have used to solve problems on your own?
Ans: I will read up books or on the internet, as well as consult my parents/teachers/seniors/fellow classmates or anyone else who is a reliable source of information.

Issues in teaching and learning Science

1. Problems you faced in the learning of Science and how you overcome those problems?

I don't really have much problem with learning Science as most concepts are pretty easy to digest and remember but its just that I am unable to answer questions in the way markers want me too. To solve the problem I usually try and memorise the types of questions there are and the format for answering them. Occasionally I will have problems memorising certain stuff (e.g. deci, deca, periodic table) and will sometimes have some facts slip my mind but those occur rather randomly and are rather easy to get over.

2. What are the Scientific concepts that you have learnt? (State three examples)

1. Temperature is a measure of the kinetic energy in a specific body.
2. Kinetic Particle Theory tells us that all particles are in continuous and random motion.
3. Liquids and gases diffuse from an area of higher concentration to lower concentration.

3. How are these knowledge and skills useful and relevant to the real world?

It allows me to better understand scientific phenomenon going around me in the real world and helps me understand how certain things work or why they work this way.

4. What have I learnt that which is beyond my textbook/notes knowledge? (List at least 3 examples)

I have learnt about how to heat alcohol without making it combust, what is the factor that causes it to combust, and other ways to heat it up which reduce the chance of combustion.

 I also searched for different materials that absorb oxygen. This is what I found:

"The first patent for an oxygen scavenger used an alkaline solution of pyrogallic acid in an air-tight vessel.
Modern scavenger sachets use a mixture of iron powder and sodium chloride.[7] Often activated carbon is also included as it adsorbs some other gases and many organic molecules, further preserving products and removing odors.
When an oxygen absorber is removed from its protective packaging, the moisture in the surrounding atmosphere begins to permeate into the iron particles inside of the absorber sachet. Moisture activates the iron, and it oxidizes to form iron oxide. Typically, there must be at least 65% relative humidity in the surrounding atmosphere before the rusting process can begin. To assist in the process of oxidation, sodium is added to the mixture. Sodium acts as a catalyst, or activator, causing the iron powder to be able to oxidize even with relative low humidity. As oxygen is consumed to form iron oxide the level of oxygen in the surrounding atmosphere is reduced. Absorber technology of this type may reduce the oxygen level in the surrounding atmosphere to below 0.01%.[2][3] Complete oxidation of 1 g of iron can remove 300 cm3 of oxygen in standard conditions. Though other technologies can remove more, iron is the most useful as it does not cause odor like sulfur compounds or passivate like aluminium compounds. Many other alternatives are not food safe.[7] The moisture requirement of iron-based scavengers makes them ineffective in moisture sensitive applications.
The performance of oxygen scavengers is affected by ambient temperature and relative humidity.[8] Newer packaging technologies may use oxygen scavenging polymers to prevent accidental ingestion of oxygen scavengers.[7]"
Taken from http://en.wikipedia.org/wiki/Oxygen_scavenger
From this I could see that there are indeed cheap and common materials that can be used to absorb oxygen even though my teacher and parents told me that such materials may not even exist, and even if they do, would be rare, expensive. This tells me that this is not true. Besides iron, there are also other non-ferrous materials that serve the same purpose, like citrus.

I also learnt that the true function of a thistle funnel, unlike what is said in class, is to pour liquids or reagents into narrow neck containers, not to put materials that absorb chemicals as what was said in class. (Mr Tan if you are reading this could you clarify?)

I still don't really see why my method doesn't work. These oxygen scavengers can reduce oxygen levels to below 0.01%, are cheap and are available. Why not feasible?

Tuesday, 14 January 2014

Uni Physics stuff-self directed and independent learning

Hello everyone,

This is just an extra page about physics stuff, and I won't be making a new page every time I update the physics section.

*CHANGE-TO TEACHERS-THIS IS MY SECTION ON SELF DIRECTED AND INDEPENDENT RESEARCH LEARNING. I SHALL BE DOING THIS PART ON PHYSICS INSTEAD OF SEARCHING FOR MANY IRRELEVANT TOPICS AND INSTEAD FOCUS ON ONE PARTICULAR TOPIC. PLEASE MARK WITH YOUR RUBRICS BASED ON THIS PAGE.

Just some clarification: Don't think anything big when you hear uni textbook; its not really that hard (some of the things are actually done in Sec 3, in fact the first chapter is devoted to estimation and the number of important digits, as well as exponentials, which is just a fancy word for expressing things in powers of 10: (calculator format), and I haven't gone that all that far yet.

My father is always telling me: many people think that physics is basically memorising a bunch of formulas. However, my father says that to do physics well one needs to understand the concepts of physics well. Though I do not see the importance of this now, I hope to in the future.

A few apologies, as this is all done in blogging format, I will be unable to insert some symbols and might need words. If you feel something is wrong with the equations or you don't understand some things, just post it in the comments.

I will probably be arranging my things in chapters.

Kinematics in one direction(=speed and acceleration)
14/1/14:
When I started my physics textbook, this is the first chapter with any real math in it. So it was quite daunting at first. The first stuff is basically the rate and speed stuff you do in primary school. The only new thing is that velocity instead of speed is used. This means that it also includes the direction and at least one of the directions must be stated as positive and negative (which makes the other the opposite).

Basically, 1D kinematics is movement in one dimension (forward and backward). There are some important equations for 1D kinematics:

v=v0+at
x=x0+v0t+1/2a(t)(square)
vsquare=(v0)square+2a(x-x0)
v(average)=(v+v0)/2

All these equations require a to be constant. For each of these equations, v is velocity, x is distance, a is acceleration and t is time. (The 0s are meant to be subscripts but I can't do that in Blogger). v without a subscript basically means that it is the velocity of an object at a designated point of time (e.g. at t1, the velocity of the object is v1 and the distance it has travelled is x1-x0 where x0 is the starting point). Normally the subscript 1 is not used unless there are two designated points (subscript 2) where there is a greater need to differentiate the two. For t however, when there is no 0, it refers to a duration of time. A specified point in time will usually always have a subscript.

I will try to put these equations into layman terms/explain them. I probably won't do very well, but I'll try my best.

Eq 1: v is v1. The time for the object to accelerate from v0 to v1 is t. The acceleration of the object is in m/s(square), which basically means that the m is divided by s twice. For example:

A car was going at 45m/s. It accelerated constantly for 6s to 87m/s. Find its acceleration.
87=45+6a
a=7

Eq 2: t is the time interval from the time the object is at x0 to the time where it is reaches x. The logic behind it is that v0t is the distance the object would have travelled if it had not accelerated, and 1/2a(t)(square) is the extra distance it goes through acceleration. The reason why v0t is the distance the object would have travelled if it had not accelerated is pretty straightforward: it is the original velocity multiplied by the time it took. But why is 1/2a(t)(square) the extra distance the object goes through acceleration?

In the first equation we see that a times t is the difference between v and v0. In equation 4, we see that the average velocity is 1/2(v+v0). x-x0=v(average)t, thus x-x0=1/2(v+v0)t=1/2(v0+at+v0)t =v0t+a(t)(square)
Thus is equation 2.

Eq. 4: As it has been used in the previous equation, I don't think it needs a lot more explanation. The average velocity of an object, assuming it accelerates at a constant rate, is the average of its starting and ending velocity.

Eq 3: This is HARD!!! I will try to explain this, but it needs quite a bit of algebra and some things that are rather hard to explain in this manner. Thankfully, this equation is mostly only needed for certain proof and is not usually used in problems.

1st step: simultaneous equation
v=v0+at
x=x0+v0t+1/2at(square)
t=(v-v0)/a
Substituting into second equation:
x=x0+v0(v-v0)/a+a(v-v0)(square)/2a
Cancel a:
x=x0+v0(v-v0)/a+(v-v0)(square)/2
Multiplying everything by 2a:
2ax=2ax0+2v0(v-v0)+a(v-v0)(square)
2a(x-x0)=2v0v-2v0(square)+v(square)-vv0-vv0+v0(square)
2a(x-x0)=v(square)+v0(square)

Thus is equation 3. This is normally only used in situations where t is not mentioned and is unobtainable using any of the other equations (all of which contain t)

15/1/14

Here is one of the questions of the book that uses some (but certainly not all) of these equations. I will change it a bit or else it would be too complicated to explain without a diagram.

A car decelerates from 14m/s at 6.0 m/s^2. How far has it travelled during this time period?

Solution:
v/a=t
14/6=7/3=(about)2.333
(average)v=(v+v0)/2
(average)vt=x
(14+0)/2*2.333=(around)16
Ans: 16m

In 1D Kinematics, air resistance is ignored, thus all objects accelerate when falling at a constant rate of 9.8m/s^2.

Another problem:

A tower is 70m high. How far will a ball dropped from the top have travelled after (a) 1 second, (b) 2 seconds and (c) 3 seconds?

Solution:
(a)
In 1 second, the ball will have accelerated to 9.8 m/s since 9.8m/s^2 times 1s=9.8 m/s. The average velocity of the ball will be the average of the starting speed and the ending speed, namely 0m/s and 9.8m/s (note: this is only true for constant acceleration of the ball), which is (0 m/s+9.8m/s)/2 which is 4.9 m/s. You can then multiply this by the time to get 4.9m since 4.9 m/s times 1s=4.9m.
(b)
I shall not explain this one in words; if you don't know why I do certain steps refer to the example above.

9.8*2=19.6
(0+19.6)/2=9.8
9.8*2=19.6
Ans: 19.6m

(c)
Try this one on your own! The answer is 44.1m.

Note: the values are in the ratio 1:4:9. This is basically 1^2:2^2:3^2.
4.9/1=4.9
19.6/4=4.9
44.1/4=4.9

4.9=9.8/2
     =a/2

Thus we derive the equation 1/2a*t^2=x (recap: x is total distance travelled) which I have proved earlier (you can refer there for the proof). Try this equation for different gravities and the equation will still hold true. Actually, it is not just gravity-you can use this equation for any type of acceleration!

I think that will be it for 1D Kinematics. Now for 2D Kinematics:
_________________________________________________________________________________

2D Kinematics

2nd March 2014


2D Kinematics and 1D Kinematics are quite similiar except that now there is motion in 2 directions instead of 1. The main concept for 2D Kinematics is that you need to treat the motion as two separate motions in 2 different directions-not as one! For example, for a force exerted at a certain angle, you need to use trigonometry to calculate the force exerted in each direction, then calculate the resultant motion before finally using trigonometry again to convert both motions on the x and y axis into a movement at a certain angle in a certain direction.

For 2D Kinematics, you need some very basic understanding of sine, cosine, tangent, arcsine, arccosine and arctangent. Don't worry, most of the time you just need to know which function to use for what setting-let the calculator do the hard work for you!

One more thing-for physics, don't be afraid to use your calculator-for physics you need precision and accuracy, and calculators are there for a reason-to shorten the time you take to do the problem. Even if you can do the sum with some triple digit multiplication, just do it with your calculator. Our goal here is not to give you superb mental calculation, but instead it is to ensure that you understand the basic concepts and stuff-the actual calculation is not as important. Also for trigonomic functions you either use tables or a calculator, whereby the latter is much faster and more accurate, so try to use your calculator.

A basic introduction about a bit of the trigonomic function (note: what I will be stating will not be enough to equip you with sufficient trigonomic knowledge to solve the questions! If you want to do some reading up on your own)

First and foremost, sine, cosine and tangent only work for right-angled triangles!
However, when angles are involved, a vertical line can be drawn connecting the two lines that will form a right-angled triangle. From there sine, cosine and tangent can be used.

Triangles are made up of the hypotenuse, adjacent and opposite lines. Which line is which type all depends on the placement of the angle, theta. The theta sign looks like an italicised 0 that has a line in the middle.

Yup, that's the one.

Coming back to triangles.

The hypotenuse is the longest line in the triangle. The adjacent is the other line that is touching angle theta yet not the longest line in the triangle.

Trigonometry is based on one concept: when you have two lines, the ratio between them for a certain angle theta will always be constant. For example, when you have the opposite and hypotenuse, if you know the angle between them, and you know one of the measurements, you can use sine to find the relationship between the two measurements (a coefficient), then you can find the other measurement.

For example, I have a triangle. Theta=36 degrees. It is between the opposite and the hypotenuse. Thus here I can use sine.

If the hypotenuse is 25m:
sin(25)=opposite/25m
sin(25)=0.4226182617
0.4226182617=opposite/25m
0.4226182617*25m=opposite
Thus opposite=10.56545654.

Sine formula: sin(theta)=opposite/hypotenuse

The other two formulas work similiarly.

Cosine formula: cos(theta)=adjacent/hypotenuse

Tangent formula: tan(theta)=opposite/adjacent

To memorise the formulas for each trigonomic function, remember SOHCAHTOA. S, C and T are sine, cosine and tangent, while O, H and A are opposite, hypotenuse and adjacent.

There are three other trigonomic functions also involving these three sides but you will most likely not be using them for this section.




Now on to the physics...
_________________________________________________________________________________

27/4/14

In 2D Kinematics, you will be using a lot of VECTORS.

Vector~a quantity having direction as well as magnitude, especially as determining the position of one point in space relative to another

Vector diagrams are diagrams using arrows to specify the direction and distance travelled.

Here's a vector question.

John walked 27.8 degrees north from east for 65.7m. He then walked another 13.6 degrees south from east for 156.2m. How far is he from the starting point.

These questions are usually best visualised using a vector diagram but being unable to insert proper vector diagrams in here I shall try my best to explain the solution. If you do not understand just leave a comment in the comment box. (and your email?)

Remember what I said at the start of this chapter-the key is to see each motion as two separate motions in two separate directions. First you separate the two motions into 4 motions, 2 on each of the x and y planes. Find the resultant motion for both x and y before then combining them into a single motion with an angle.

(You will need trigonometry for this question)

First, 27.8 degrees north from east.
sin(27.8)*65.7=30.6416 (for physics questions I like to round to 4 decimal places, you can use 3)
cos(27.8)*65.7=58.1169

Since the vector arrow for this will be pointing more east than north, the motion will be largely east. Thus we can see that the first motion can be separated into two motions of 30.6416m north and 58.1169m east.

Next, 13.6 degrees south from east.
sin(13.6)*156.2=36.7292
cos(13.6)*156.2=151.8203

Since the vector arrow again will be pointing more east than south, the motion will be largely east. Thus the second motion can be separated into 36.7292m south and 151.8203m east.

Thus

30.6416-36.7292=-6.0876
58.1169+151.8203=209.9372

John travelled 6.0876m south and 209.9372m east.

To visualise combining them into one vector, we need a vector diagram.

--------->
              |
              |
              |
              |
              |
              |
              |
             V
Not drawn to scale (obviously)

At the meeting point between the two vectors, there is a 90 degrees angle. Here, we can use Pythagoras theorem. (You know what that is right)

For those who don't,

a^2 + b^2 = c^2\!\,

(Square root both sides to find c which will be the square root of the sum of a^2+b^2)

Thus using your calculator:

The square root of 6.0876^2+209.9372^2=210.0284.

To find the angle, you need to use tangent. Tangent theta is opposite/adjacent and in this case the downwards line is opposite angle theta marked by the brackets (sorry I don't have a better substitute) and the adjacent  is the horizontal line.

--------->
()            |
              |
              |
              |
              |
              |
              |
             V
tan(theta)=209.9372/6.0876
               =34.4860

To find what theta is, we use arc tangent (a.k.a tan^-1) to get theta=88.3390

Thus the resultant motion of John is 210.0284 metres, 88.339 degrees south of east.

_________________________________________________________________________________

A bit of clarification on how to know which value (sin or cos) is what value (horizontal or vertical)|:

Some times it can be blatantly obvious which direction corresponds to which value but at other times it can get rather confusing resulting in careless mistakes (which I make a lot of sad to say)

sin-opposite/hypotenuse
cos-adjacent/hypotenuse

--------->
              |
              |
              |
              |
              |
              |
              |
             V

Remember that the horizontal line is the adjacent and the vertical is the opposite (for this case only---always remember the definition of sin cos and tan using SOHCAHTOA in case you forget-it is a common careless mistake)

For a vector of m degrees, y direction above/below x direction with original vector distance k,

sin(m)*k=distance in x
cos(m)*k=distance in y

_________________________________________________________________________________



Introduction

Hello all who read this,

I am Chia Jia Nuo Daniel from Hwa Chong class 1i3. This is a Science blog that our class is supposed to make and update for the rest of the year. Its supposed to have what we learnt during class and some extra stuff. It will also be used to give me marks for my formative assessment for Science at the end of the year (Gulp!)

Please forgive me: I have never used a blog before, and though rather tech-savvy (I think), I still find blogging a rather foreign idea. Some of my classmates have fancier blogs; please don't judge mine by its cover!

Before I continue, let me clarify something: This blog is actually supposed to be a formal blog (I didn't know earlier). I will create a section (formal, labelled "for school") for the school to view and assess, and another section that I will just be doing for fun.

For my blog, I don't think I'll have time to watch interesting videos and post them, instead I'll talk about some of the (boring?) stuff from the Physics textbook I have been doing in the holidays. I find it rather interesting (at least my father's a physicist who can tutor me), I'm not sure about you. I might occasionally (or not so occasionally) add some other stuff, but for now I'm just going to post stuff from the uni physics textbook. (It really is quite interesting; ask me if you want to see it)

If you have any comments on how I should improve this blog (especially Mr Tan; can you tell me if I'm missing out important stuff)?

One more thing to note: as this is a step by step thing, some parts of the blog might not be complete at certain points in time (e.g. half finished post), so please bear with me. Especially those parts where it is kind of concluding your learning over the course of the year; that will often be incomplete. Also for the school viewing section most of it will just be the template for the time being, and I will only fill it up when I have the information.


Term 1 Week 2

Week 2. The serious stuff starts here. (Drum Roll) Or does it?

No, actually not. For now, it is still fun and games.

On Monday, we were supposed to have lessons in the lab but apparently our lab session was meant to be on Wednesday and Mr Tan was rather upset because he had half an hour of lab period less every week. However, we still continued lessons in the classroom.

We did an experiment with the "pink monster" (pink paper with ropes hanging out as arms and legs and tape in the inside; nothing too scary about it), where we had to tug at the different legs of the pink monster and see how the ropes were connected.

For our group of 5, one problem was that the ropes kept on getting taut, and we kept on forgetting to reset it, so we got a lot of false results. Another thing was that we always forgot to take down the orientation of the monster, so we couldn't take down which leg pulled which (actually all the legs pulled each other, but because of our previous mistakes, sometimes not all the strings were moving). In the end we had to use the direction of the monster's staples and the side where its slit faced to decide its orientation.

Later, Mr Tan revealed to us that this experiment was meant to explain to us some of the limitations of Science. Some things cannot be observed on the inside, we can only understand their properties when we try out different things on them; just like how we couldn't observe how the ropes were attached since they were inside the monster: we had to use other methods to draw observations. We also learnt that there are different approaches to problems, for example, in other classes, there were pupils who pressed the fingers on the paper to "feel" the rope. Afterwards, Mr Tan showed us the ppt for lab safety ("with a heavy Singlish accent" he emphasised).

On Tuesday (today) we learnt more about the scientific method (consisting of observation, question, hypothesis, methodology, result and conclusion) as well as graphing skills. We learnt how to start a graph on a number other than 0 (so as to expand our graph) as well as to draw a best fit line. The downside of drawing the best fit line is that the line can be rather hard to draw if readings are tightly clustered or very dispersed. An accurate best fit line can only be done in some cases with the aid of a computer. We also learnt about controlled, independent and dependent variable, and had a discussion about whether variables that seem inconsequential should be kept constant.

On Wednesday, we had our lab lesson. Mr Tan showed us the apparatus in the lab and told us the safety precautions we needed to follow in the lab. We then played (safely) around with a Bunsen burner and spark gun and learnt about a luminous and non-luminous flame. In the worksheet that we were given, one of the questions was: how do you heat alcohol safely without setting it on fire? After checking with my friends, I learnt that heating it in a water bath will ensure it does not catch fire as it is not in contact with an open flame. I did a bit of research about alcohol and learnt about the flash point and stuff; rather interesting stuff), but my answer was to use a thistle something, I can't remember what and place a substance that absorbs oxygen inside. Then pour the alcohol inside. The alcohol won't burn without oxygen even if you heat it with an open flame. I wonder whether my answer is correct?

Term 1 Week 1

It was the first day of Science lesson. As we waited for our teacher to arrive, many of us were wondering: What is LSS? It all sounded so complicated. We didn't know what to expect.

Finally (though, I forgot whether we were late or he was late), our teacher arrived. He introduced himself as Mr Tan Kok Cheong, and reminded us that his email ID ended in kc, not ck or kk. (Mr Tan, if you are reading this, and I know you are: pardon me for my tone: makes it sound like I don't expect you to read it). We then talked about some admin stuff before, without warning, we were told that we had to make a Science blog that accounted for 50% of our formative assessment. I had never done anything of the sort, and I really didn't know what it would be like, but still, here I am, I guess. We were supposed to add extra information apart from curriculum. As Mr Tan showed us sample works of other people, I was thinking: "I'll never be able to do that." In fact I had never even blogged before!
Near the end of the lesson, we got our first Science worksheet of our school life in HCI: about Science and technology. Some of the others didn't really know how to do it; after all, we hadn't been doing stuff like this for a long long time.

In the next lesson, we were taught more about Science and technology: about how they were interlinked and how they benefited each other. We also talked about things like: Why did people once think that the earth was flat? And stuff like that. Though I know Science is also about inferences, but shouldn't this be done more in history class?

We were also taught some of the attitudes that a scientist should have. To tell the truth, Mr Tan, I don't think those slides are absolutely necessary. Most of us know how we should behave/what attitudes we should have, its just that some of our class (rowdier ones) don't follow these rules.

References: EMB messages of slides (I did not copy and paste! I just forgot a bit of the material so I referred to it; just a bit.)